
MuCell[®] Foam Injection Moulding

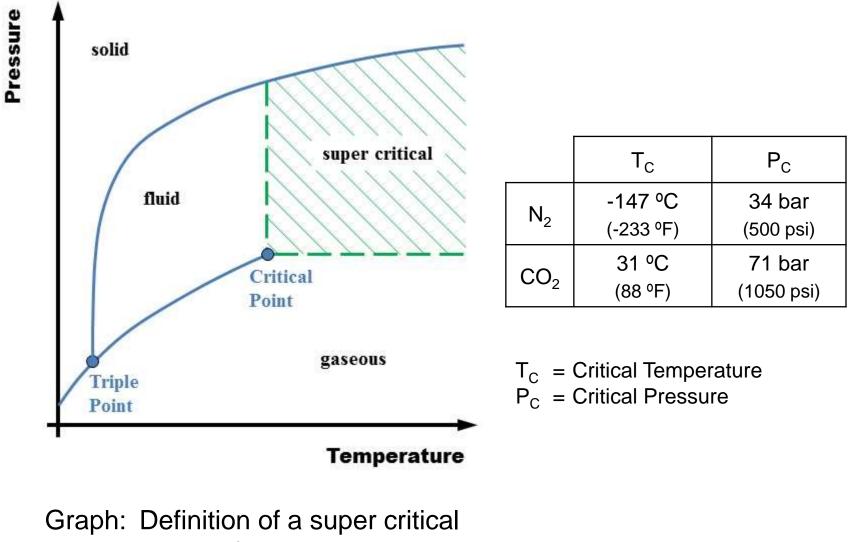
Trexel GmbH, Wiehl (D)

Molding	Innovatio	n Day in	Italy	E.	73
Date: July, 5t	h 2013		K	12	
Location: PO	INT –POlo pe	r l'INnovazio	one		- ·
Tecnologica -	- Dalmine Ber	gamo (Italy)		1	
Moldex3D	CATTINI	eøs			
(LATI)		TREXEL_			
举一举的法 一部					

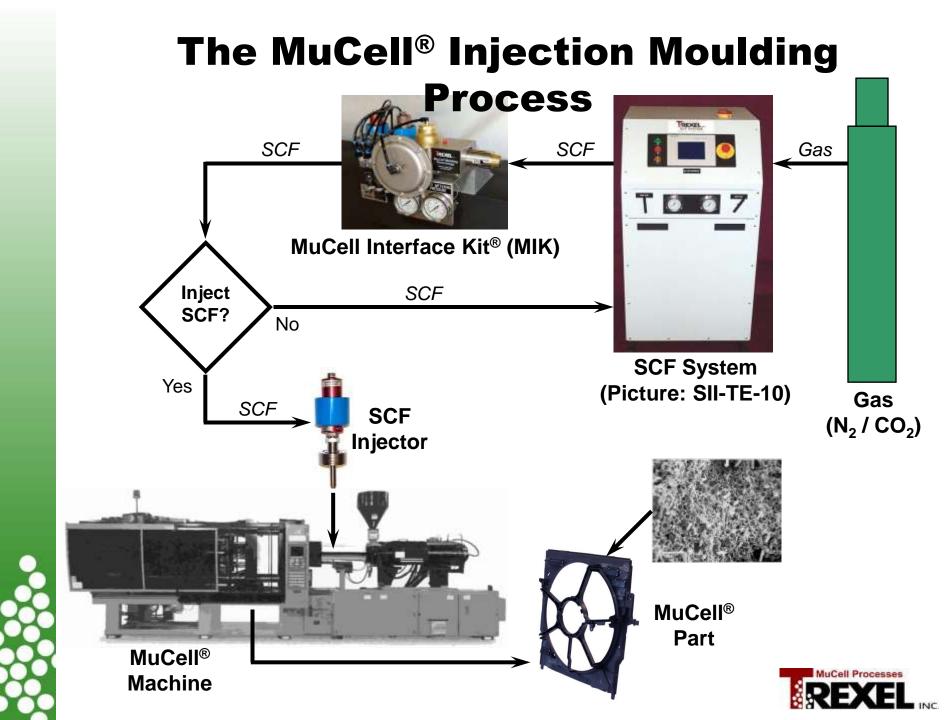
- ⇒ Company Trexel
- ⇒ Mode of Operation / Technical Equipment
- ⇒ Impact of the Part Quality / Economics
- Simulation

Trexel - history

- In 1979, Gordon Brown from Kodak request the requirement of "using less material and cost to produce product having comparable mechanical properties of that using conventional process".
- > Dr. Nam Suh at MIT proposed that product having microcells of diameters (about 10 µm) smaller than internal critical defect can improve the mechanical properties.
- > In 1993, MIT authorized Trexel for commercial processing developing
- > Since 2011 cooperations with company Arburg, Engel and Krauss Maffei for direct sales of full MuCell Injection molding machines – one stop shop – no license modell since 2006


Two Main Characteristics describe the MuCell[®] Process

- **1. Lowering of the viscosity of thermoplastic resins** by controlled feeding of gas (either N₂ or CO₂) into the melt
- 2. Creation of a microcellular Structure in the part core by gas expansion in the cavity (Injection Moulding) or after the die (Extrusion)



Super Critical Fluid (SVF)

status of a pure component

The MuCell[®] Process

Creating a single phase solution – injecting the SCF into


MuCell® microcellular foaming

MuCell[®] Moulding Technology

Scanning Electron Microscope (SEM) microstructure

MuCell[®] Applications

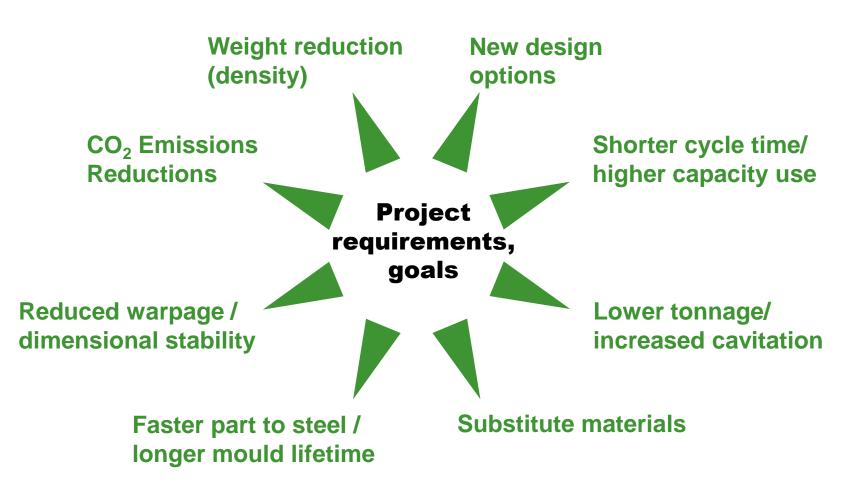
Automotive

Packaging

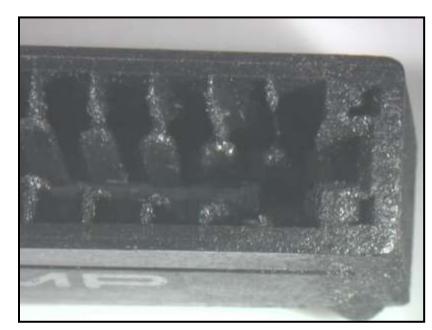
Semi conducter

MuCell[®] Appearance Applications

- ⇒ Modified nylons
 (PA 6, PA 6/6, PBT) offer
 new possibilities
- ⇒ Mould based solutions Heat & Cool …
- Appearance parts in mass production with IMD Technology



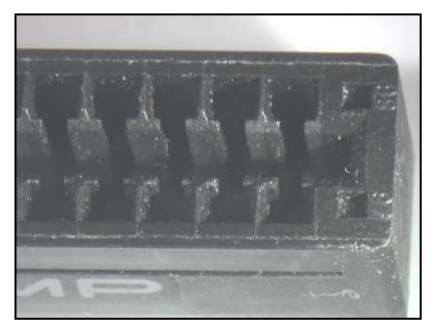
Strategic Benefits with MuCell®



The volume of new process potentials with MuCell[®] offers the chance to have a positive influence on the cost structure of a company

Plasticizing effect – improved flow

Solid at 30 °C Tool Temp.


Mould was cooled such that solid parts were no longer filling the mould

Material: Valox 420 SEO (PBT GF30)

MuCell[®] at 30 °C Tool Temp.

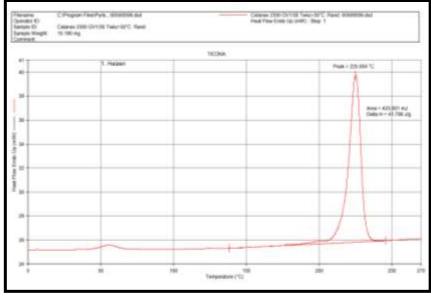
With same parameters and MuCell[®] on, the parts could easily fill

Material: Valox 420 SEO (PBT GF30)

Microcellular Foam Properties

Ticona

⇒ Without foam


DSC - Curve: PBT GF 30 with mould temp. 80°C

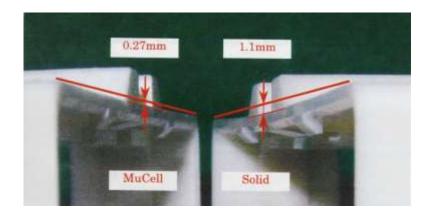
ne Thurfys: Innerfox na 1980 Orrite faka-80°C Rael 8	Colorest 2016 (Srifts) Sold-Stift, Hand Mittanian Sol Year Prov. Scill, (MIR), State: 9
	10288
1. Helper	Post - STEAD 'C
	<u>A</u>
	Anna - 317 Bill ni. Cada H - 40313 Ju
81 100	Vi0 200 200
	2000 OPT103 Toku-BETC Rood 8

Melting temperature : 225,4°C Heat of Fusion (Δ H): 40,67 J/g

⇒ 10% physical foam

DSC - Curve: PBT GF30 with mould temp. 30°C

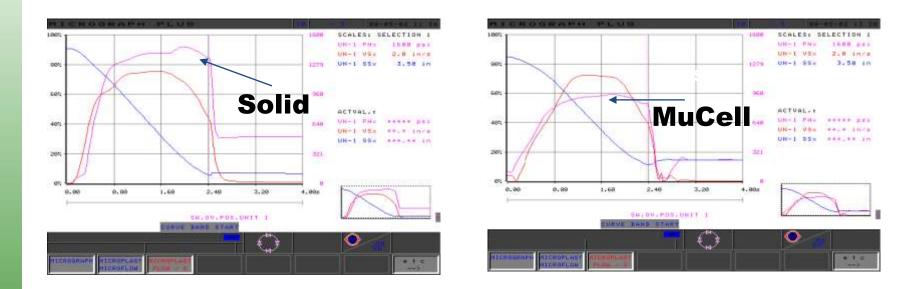
Melting temperature: 225,0°C Heat of Fusion (\triangle H): 41,93 J/g



Abolition of parameter hold

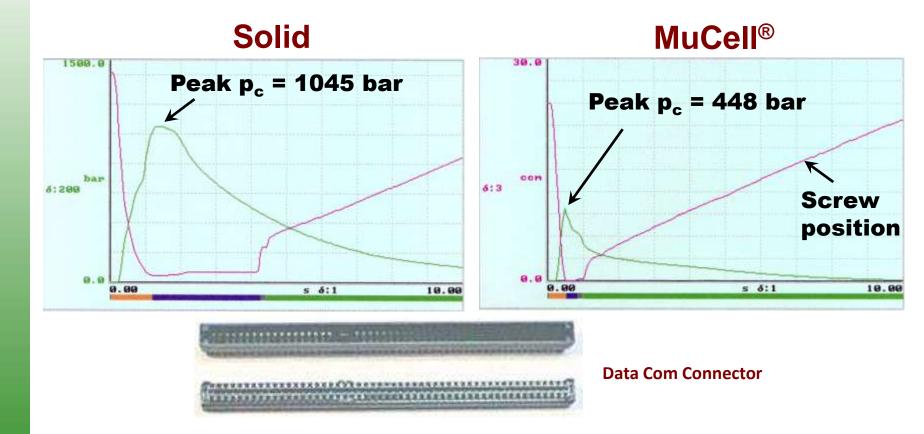
The parameters hold pressure p_H and hold time t_H are deleted by the MuCell[®] Foaming Process.

- Part formation by cell growth, independently of part weight
- Counteraction against shrinkage <u>not</u> by additional packed mass
- Equal pressure distribution in the cavity (significant less difference in pressure levels near injection point and far injection point)


Example: Connector Housing (PBT GF30)

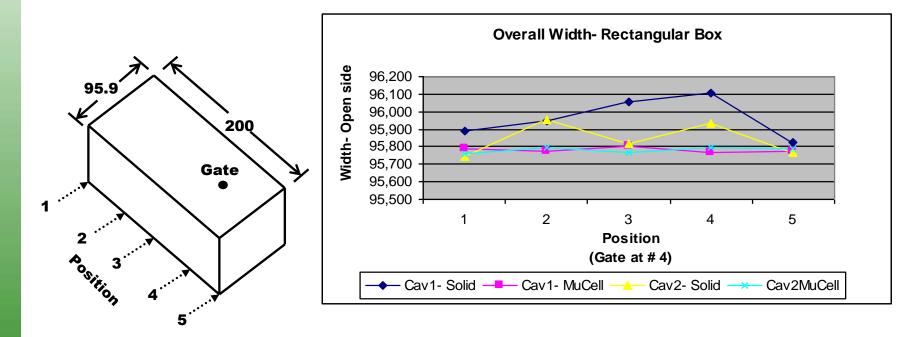
Decoupling of part dimensions and part weight

Reduced Injection Pressure



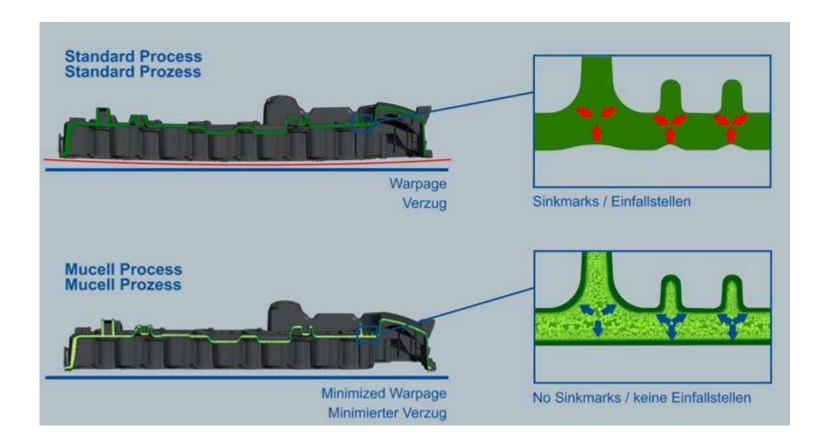
- 34% Reduction in Hydraulic Injection Pressure
- Related to lower Viscosity

Lower Cavity Inner Pressure

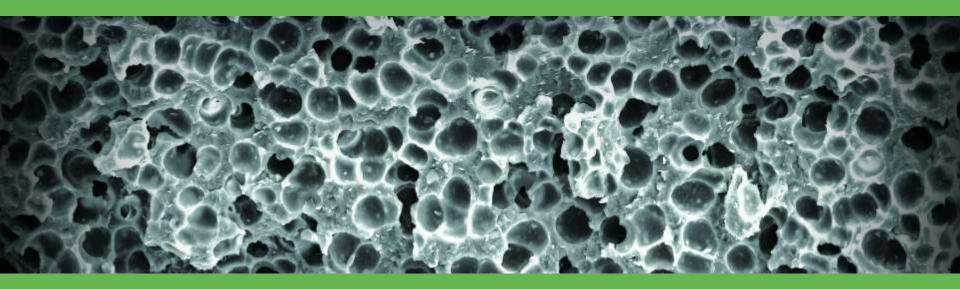


- 57 % reduction in peak cavity pressure
- Due to viscosity reduction, less resin volume, no pack & hold pressure

Strategic Benefit Quality (faster product release)



More consistent & predictable MuCell[®] dimensions simplify mould design & reduce the number of costly iterations


Standard Injection Molding vs. MuCell

MuCell[®] - on the market

Trexel GmbH, Wiehl (D)

⇒ Examples

MuCell[®] Fan Shroud

Shroud + hinge combined in one mould

MuCell[®] Benefits:

- 8 % weight reduction
- 20 % cycle time reduction
- 30 % smaller machine size
- Fatigue-to-failure improved by 400 %

Material: PA 6 GF15 MN25

MuCell[®] Climatic Control Housing

MuCell[®] Benefits

- Shorter cycle times due to quality improvement
- Clamp force reduction
- Easier to assemble

Daimler W212 Door Trim

Winner 2009 in category Interiors

MuCell® parts:

⇒ Carrier:

- Thinner wall thickness by lower viscosity
- I0 % density reduction by MuCell
- Tandem-Mould Technology plus
 MuCell (with > 50 % cycle time red.)
- Wall thickness to rib ratio = 1:1

⇒ Map Case:

- Wall thickness to rib ratio = 1:1
- Deletion of one tool and an additional assembling process (by MuCell Design)
- Advantages with IML Technology (lower pressure levels) MuCell Processes

Mercedes Benz : Project MFA (B Class ...)

• weight saving by design + density ²

2 parts out of 11

DAIMLER

- reduced warpage, easy assembly
- POPPELMANN

High Gloss Frame with MuCell®

Screen DVD player

Mercedes Benz – W246 Head Lamp Housing

- Clamp Force reduced by 50%
- more design freedom
- reduced warpage

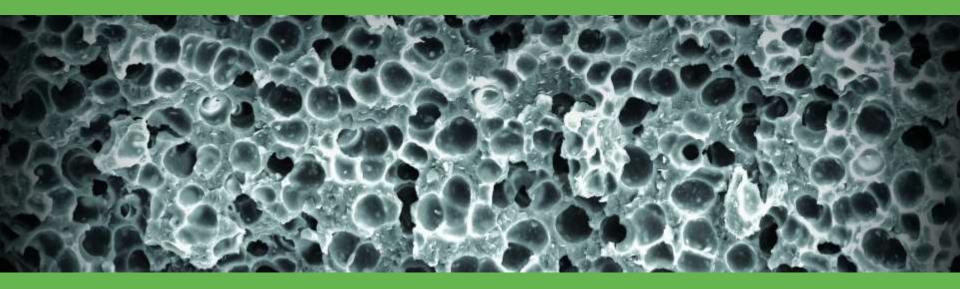
IP Carrier Golf VII

• 500g weight reduction per part !

Airbag Cover Volkswagen Polo

- elimination of sink marks
- clamp force reduction

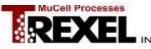
Cockpit Covers Mercedes Trucks


Blinds and covers of the new Mercedes-Benz Actros are produced with softtouch-surfaces applying the Dolphinmethod

MuCell[®] - Positive Impact on Economic Efficiency

Trexel GmbH, Wiehl (D)

⇒ Calculation Tool



MuCell Cost Analysis Input Worksheet

Trexel can provide a detailed cost analysis including such items as return on investment, detailed part savings in both material and operational costs, piece part pricing both solid and MuCell and detailed payback analysis. For Trexel to complete the MuCell cost analysis the following information is required:

Company:	Contact:	
Address:	Tel. #:	
	Fax #:	
	Email:	

Part Name	
Type of Material	
% Filler / Filler material	
Cost of Resin / Kg or lb	
# parts / year	
Total cycle time (seconds)	
Hold Time (seconds)	
Part weight (g)	
Total shot weight	
# of cavities	
Machine Size (tonnage)	
Machine Hourly rate / \$	
Screw size (mm)	

Example Calculation Cam Cover

1

Material: PA 6.6 GF35

- Production volume = 250.000 parts/a
- Part weight = 1.000 g
- Number of cavities =
- Cycle time in solid = 57 s
- Clamp force in solid = 800 t

Example Calculation Savings (MuCell[®] vs. Solid)

	=	9 %
on	=	31 %
Solid	MuCell	
3 s	1.5 s	
7 s	0.5 s	
35 s	25 s	31.6 % faster cycle time with MuCell
12 s	12 s	
Total cycle time:57 s		J
	Solid 3 s 7 s 35 s 12 s	Solid MuCell 3 s 1.5 s 7 s 0.5 s 35 s 25 s 12 s 12 s

Reduction in machine size = 38 %

Example Calculation Input Data

45 Sixth Road - Woburn, MA 01801 Phone: +1-781-932-0202 Fax: +1-781-932-3324

68,14

no

68,14

3,17

2731

Rate the following or Input a number: (Cells Shaded in Yellow are required) (Cells Shaded in Gray are optional) (Cells Shaded in Blue cannot be changed)

Convert \$/kg

Convert g

to \$/lb

to lbs

he MuCell Cost Analysis Workbook

0	ta de la companya de
ustomer Name	Automotive Moulder
pcation	Anywhere

se Metric System

yes

Application #1	
art Name	Cam Cover (Example)
/pe of Material	PA
Filled/Filler Material	35%
of Parts/year	250.000
otal Cycle Time (seconds)	57
art Weight (g)	1000,0
of Cavities	1
ost of Resin- PA (\$/kg)	3,17
achine Size (Metric) needed for Solid	800
achine-Hour Rate (\$/hour)	91,34
National Average for 800-tons (\$/hour)	91,34
of Production Hours Needed for Solid	3.958
anned production hours/IMM/year	5.640
MuCell Process Ben	efits
cle Time Reduction	31%
eight Reduction	9%
achine Size Reduction Possible	38%
achine Size (Metric) needed for MuCell	500
sume New Machine-Hour Rate	yes

Machine Configuration	
For Solid Production:	
Total Production Hours	3.958
# of Machines Needed	0,70
# of Molds Needed	-
Machine Size (Metric) needed for Solid	800
For MuCell Production:	0.0.0
Total Production Hours	2.731
# of Machines Needed	0,48
# of Molds Needed	4
Machine Size (Metric) needed for MuCell	500
Reduction in Initial Capital Cost due to	
- Smaller Machine Requirement	4
- Less # of Machines	2
- Less # of Molds	

MuCell Technology	Costs		
Screw size	90 mi		
MuCell Package for 90 mm screw	160.000 US		
 # of MuCell Packages needed 			
Comments:			
MuCell Package includes:			
SCF System, MuCell Interface Kit, Recycli			
Operating Licenses in accordance with Pa	ragraphs 6, 7, 8, and 10 i		
Trexel's Terms and Conditions of Sale, 5 (days of applications		
support and training			
	Arburg —		
Platform Supplier	Albuig		
- Cost of MuCell Option/Press	94.500 US		
- # of Units			
Type of Blowing Agent	Nitrogen		
- Cost of Nitrogen (\$/kg)	0,9		
- % Nitrogen Used	0,50		
CONVERSION TAI	BLE		
Convert \$/lb	1,3		
to \$/kg	2,8		
Convert lbs	0,66		
to g	30		

ess (\$/hour)

New Hourly Machine Rate using Smaller

National Average for 500-tons (\$/hour)

aterial Subsitution Possible

ost of Alternative Resin- (\$/kg)

1,70

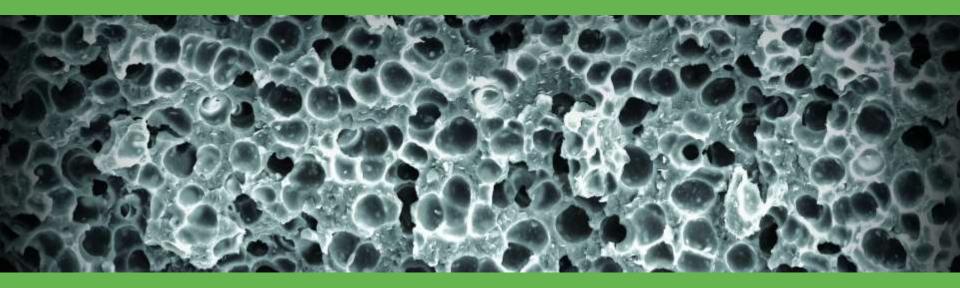
0,77

0,165

75

Example Calculation ROI Analysis ROI Analysis for Automotive Moulder

Year	<u>0</u>	1	2	3	4	<u>5</u>	<u>6</u>
				;			
	(254.500) 60.000) 94.500)						
Other Capital Costs	(10.000)						
Reduction in Initial Capital Cost due to Smaller Machine Requirement, Less # of							
Machines and/or Molds	×						
TOTAL Capital Costs	(264.500)			5			
Operations				2	i. (2	12	
Operational Savings (Cycle and Tonnage) Application #1- Cam Cover (Example)		175,439	175.439	175.439	175.439	175.439	175.439
Application #1- Carricover (Example)		- 170.408	- 170.438	170.438	- 170.438	- 170,438	170.438
Application #3-		-	14.0	(+)	-		÷
Application #4-		<u>2</u> R	8 <u>0</u> 2	8 <u>8</u> 3	<u>92</u>	0	<u>1</u> 28
Material Savings							
Application #1- Cam Cover (Example)		71.381	71.381	71.381	71.381	71.381	71.381
Application #2-		-	(A)	8 8 6	÷	÷	×
Application #3-		<u>2</u> 8	828	9 <u>1</u> 37	92	0	22
Application #4-		-2	386	8 9 8	÷-		
Other Operational Savings							
Other Operational Costs							
N2/CO2 Cost		(1.438)	(1.438)	(1.438)	(1.438)	(1.438)	(1.438
TOTAL Operational Savings		245.382	245.382	245.382	245.382	245.382	245.382
Net Cash Flow	(264.500)	245.382	245.382	245.382	245.382	245.382	245.382


1,08
804.201
304%
91%

NC

MuCell[®] - Positive Impact on Project

Trexel GmbH, Wiehl (D)

contact : Martin Jacobi - m.jacobi@trexel.com

