

2015 Molding Innovation Day

Sensor Node & Measure Node Nodi sensori e nodi di misura

Stefano Canali – Moldex3D

10 Luglio 2015 POINT Polo per Innovazione Tecnologica Dalmine Bergamo Moldex3D Italia srl Corso Promessi Sposi 23/D -23900 Lecco (LC) www.moldex3d.com

Introduzione ai Nodi Sensori (Sensor node)

- > I nodi sensori servono per calcolare le informazioni transitorie come ad esempio la curva "storica" della pressione, della temperatura, dello shear rate...ecc.
- I nodi sensori possono essere assegnati ad ogni parte dello stampo per entrambe le applicazioni Moldex3D/eDesign e Moldex3D/Solid.

Introduzione ai Nodi di Misura (measure node)

- > I nodi di misura servono per valutare il valore locale del risultato all'istante corrente, es., Total Displacement nel Warpage. Per valutare le proprietà locali, si devono assegnare i nodi di misura alle zone desiderate.
- > Inoltre, il Measure Node Wizard può essere utilizzato per exportare un file CSV. Questo file contiene le voci di risultato per ogni nodo di misura ed è utilie per valutare in modo più preciso e nei punti desiderati il risultato che ci interessa es., il comportamento di warpage.
- > In Moldex3D/eDesign, i nodi di misura possono essere assegnati <u>solamente</u> alle superfici di parti o runner.
- > In Moldex3D/Solid, i nodi di misura possono essere assegnati liberamente a tutti i nodi della mesh solida.

Come assegnare i Nodi Sensore o i Nodi di Misura

Moldex3D/eDesign

Moldex3D/Solid

Esempio (eDesign)

dati al nodo sensore durante il calcolo.

I nodi di misura possono essere assegnati anche dopo la simulazione.

Visualizzazione dei nodi sensore

Possiamo vedere i nodi sensori precedentemente impostati in eDesign

Visualizzazione dei risultati dei nodi sensori

Dopo la simulazione, i risultati dei nodi sensori si possono trovare sotto la voce Multi-Curve Settings nelle XY Curve

History Curve Option - [Filling] - [Ne	ew Plot]	- • •
Group: Molding Property Molding Property All sensor nodes Group #3 Group #2 Sprue Group #1		Curve
Clamping Force Flow Rate	>>	
Total Weight Cavity Weight#1		
Flow Rate Gate 1-1		Delete Clear
Save Plot XY Plotter Setting	1	Close

Dopo aver fatto doppio-clic su multi-curve settings, possiamo scegliere i nodi sensori che vogliamo visualizzare.

Pressure	
Temperature	
Shear Stress	
Shear Rate	
X-Velocity	
Y-Velocity	
Z-Velocity	
Flow Rate	
Density	
Specific Volume	

Esempio di risultato dei nodi sensore

Pressione e Densità registrate al Nodo Sensore#6 durante il filling.

Usando i nodi sensori, possiamo registrare: <u>Pressure</u> <u>Temperature</u> <u>Shear Stress</u> <u>Shear Rate</u> <u>X-Y-Z Velocity</u> <u>Flow Rate</u> <u>Density</u> <u>Specific Volume</u>

Nodi di misura

I nodi di misura possono essere assegnati dopo la simulazione. Ci mostreranno il valore al tempo corrente.

Registrazione dei nodi di misura × Filling_Melt Front Time Time = EOF x10 -1 [sec] 23 Measure Node Wizard 1.527 1.426 Mouse select ID Show tooltip 1.324 31517 31465 V 2 Delete 1.222 31568 V 3 N31673=(-12.59.-72.31.1 Clear All 31644 V 4 1.121 N31595=(-12.28,-72.65,137.3) mm V 5 31595 N31644=(-11.95,-72.97,137.3) mm Check All 1.019 31673 V 6 N31568=(-11.62,-73.27,137.3) mm **7** N31465=(-11.28,-73.57,137.3) mm 0.917 Output CSV N31517=(-10.75,-73.98,137.3) mm 0.815 CSV ile output 0.714 File ame : Filling 0.612 O tput to Report run directory O tput to specified directory: 0.510 E:\ IDX WorkingFolder\MDXProjer 0.409 0.307 Cancel OK 0.200

0.103

0.002

÷

Nodi registrati.

M Start Page MDXProject20130715.m3j

Doppio clic sulla mesh per registrare i nodi.

0.mde/PP_SABICPPS77P_1.mtr/MDXProject20130715_

00 0.60 mm

=12 Em=0 (FastCool) <eDesign2>

Visuallizzazione dei nodi di misura

Esportazione in CSV

Dopo aver esportato i nodi di misura come file CSV, si possono visualizzare i risultati disponibili all'istante corrente.

	А	В	С	D	E	F	G H		Ι	
1	iNode	NodelD	X-Cord [mm]	Y-Cord [mm]	Z-Cord [mm]	Melt Front Time [sec]	Pressure [MPa]	Temperature [oC]	Shear Stress [MPa]	
2	1	31515	-10.9284	-73.8486	137.256	0.00835	10.5325	98.9645	0.0(
3	2	31465	-11.2801	-73.5679	137.256	0.008029	10.6095	86.793	0.048	
4	3	31568	-11.6215	-73.2746	137.256	0.008011	10.6404	83.7315	0.03	
5	4	31644	-11.952	-72.9691	137.256	0.008023	10.6875	72.8791	0.02	
6	5	31595	-12.2758	-72.6471	137.256	0.0079	10.6935	94.4797	0.041	
- 7	6	31673	-12.5875	-72.3135	137.256	0.008028	10.6575	98.9144	0.04	
8	7	31702	-12.8868	-71.9686	137.256	0.008093	10.5944	102.595	0.056	
9	8	31542	-10.5669	-74.1165	137.256	0.008415	10.4782	102.416	0.06	
10										
11	[EOF]									

Solid (Solid)

Materiale e impostazioni di processo

Plastic Material	Thermoplastic
Generic name	ABS
Supplier	CHI-MEI
Trade name	POLYLAC PA737
MFI	MFI(200,5)=3 g/10min
Fiber percent	0.00 (%)

Process								
Filling Time	6.5 (sec)	Channel ID	T (oC)	Q (cm^3/sec)	Coolant	D (mm)	Re	
		EC1 (Group 1)	24	70	Water	8	12150.5	
Melt Temperature	205.0 (oC)	EC2 (Group 1)	24	70	Water	8	12150.5	
Mold Temperature	50.0 (oC) Material properties :							
Max Injection Processo	100.00 (MDo)	Mold metal ID		Mold Metal [ALUMIDE]		-	-	
wax. Injection Pressure	TOU.UU (IVIPA) Density		1.36		g/cm^3			
Packing Time	5.0 (sec)	Heat Capacity		4.8e+006		erg/g.K		
Max. Packing Pressure	100.00 (MPa)	Thermal conductivity		55000 3.8e+010		erg/sec.cm.K		
				0.2				
VP Switch by volume(%) filled	vitch by volume(%) filled 98.00 (%)		Poisson ratio		0.5		-	
Cooling Time	80 (sec)	CLTE		1.1e-005		1/K		
Mold Opening Time	5.0 (sec)							
Cycle Time	96.5 (sec)				Mo	olde	x 3D	

groups of results during iterations. Coolant inlet side is observed cooler than outlet side.

5 sensor nodes at the core side show three groups of results. Coolant inlet side is also observed cooler than outlet side.

3D

MOLDING INNOVATION

CoreTech System Co., Ltd. www.moldex3d.com