

Warpage Issue in Chip Encapsulation

STMicroelectronics Daniela Spini

Moldex3D

- Introduction of STMicroelectronics 1 2 IC packaging 3 Warpage issue Methodology 4 5 Chip encapsulation simulations and results 6 Conclusion
- life.augmented

STMicroelectronics: Beyond Semiconductor

Our technology stems from long-term strategic enablers

Smart Mobility

ST provides innovative solutions to help our customers make driving safer, greener and more connected for everyone

Power & Energy

ST technology and solutions enable customers to increase **energy efficiency** everywhere and support the use of renewable energy sources

Internet of Things & 5G

ST provides sensors, embedded processing solutions, connectivity, security and power management, as well as tools and ecosystems to make development fast and easy for our customers

5

Semiconductor technologies are our foundation

Packaging technologies are our future

IC Packaging

What's a package in microelectronics?

Packaging assembly process flow

Molding process

- Molding is the process of microchip encapsulation within a mold cavity by epoxy molding compound (EMC) injection
- EMC is a combination of organic (thermoset polymer) and inorganic (silica filler)

What does EMC provide?

- Protection of the die from any damage and contamination
- Package structural and mechanical stability
- Create a barrier to limit the corrosion
- Low-cost manufacturing

Molding process

13

Typical reliability issues caused by molding process which led to production loss and/or customer complaint

Warpage issue

life.augmented

15

What we do for molding compounds?

Methodology

Viscoelasticity in few words

How is viscoelasticity measured?

How is viscoelasticity measured?

It's now easy to model...

Chip encapsulation simulations and results

Case study for warpage investigation

life.auamente

Simulation results

Molding process

Filling is complete and no voids are present

Warpage after mold

Warpage	Simulation	Experiment
Time ZERO	26.2um	24.7um

Good match, model validated!

Simulation results

Conclusion

Thanks to **Moldex**3D simulation with chip encapsulation tool:

It is possible to reproduce warpage behavior of IC package in order to predict it.

Thank you

Back-up slides

Warpage test

Physical interpretation

life.auamente