

Moldex3D Material Digital Twin & MHC

Ethan Chiu | 2023,06,20

Content

- Material Characterization Center
- Plastic Material Digital Twin
 - Shear heating Correction
 - Warpage Validation
 - Injection Pressure Based Viscosity Correction
- MHC
- Summary

Material Characterization Center

ISO 17025 Certified Material Characterization Center

Ce	rtificate of Accreditation
	This is to certify that
	ComTrack Statem Co. 14d
	Addex3D Material Research Center
8F-1, No.32, Taiyu	an 1st Sc., Zhobei City, Hsinchu County 302, Taiwan (R.O.C.)
	s accredited in respect of laboratory
ccreditation Criteria	: ISO/IEC 17025-2005
eccreditation Number	: 3417
briginally Accredited	: December 25, 2017
Hective Period	: December 25, 2017 to December 24, 2020
secredited Scope	: Testing Field, see described in the Appendix
	Churg-Lin Wang-
	Chang-Lin Wang President, Taiwan Acceptitation Foundation Date : December 25, 2017

GÖTTFERT

Rheograph RG25 Capillary viscosity and thermal conductivity with counter pressure equipped

GOTECH

CR-6000 pvT-6000 Capillary viscosity at different temperature and shear rates pressure

Anton Paar

MCR 502 Rotation and oscillation tests for viscoelastic properties

TMA 4000 DSC 8500 Coefficient of Transition thermal expansion temperatures and crystallization kinetics

Instron 5966 Mechanical properties

Material Characterization Center : Instrument Line-up 1

Material Characterization Center : Instrument Line-up 2

Plastic Material Digital Twin

Accuracy of CAE Simulation Depends on Reliability of Plastic Material Data

	Modulus E1 (MPs)	Modulus E2 (MPa)	Polason's Ratio v12	Poisson Ratio V23
Test 1	8324	2977	0.299	0.370
Test 2	6582	2772	0.310	0.432
Test 3	5870	27/67	0.290	0.396
Test 4	0217	3054	0.283	0.462
Test 5	6435	2430	0.285	0.407
average	8287	2800	0.294	0.401
STORY	266	242	0.011	0.022

Mechanical Properties: related to part strength and mechanical behavior, shrinkage and warpage

More Factors to Be Considered

Shear Heating Correction

Correction Process of viscous heating

Main focuses on retrieving the viscosity curve from viscous heating interference

DT correction : Data regression precise correction

Shear viscosity measurement method

TR-TP-0001 shear viscosity (high shear rate) by capillary rheometer

Digital Twin Correction

TR-SS0004 Material digital twin – viscous heating correction

• Target :

Curve data correction of non-ideal conditions that exist in the testing process

- non-isothermal, Entrance effect, non-Newtonian, pressure effect, ...

Distribution in the Flow Field Simulation

Non-homogenous physical properties in the axial directions could be different, which are assume constant in the traditional rheometric evaluation

• In a general capillary rheometer, the temperature rising, and uneven distribution will lead to data deviation, so that the ideal working equation cannot be 100% valid.

➔ These deviation from ideal assumption will be corrected by Digital Twin Calibration !

Distribution across tube

• e.x. Temperature raise up to 30°C (PS: T=170°C, app Shear rate =5000)

Theoretical Justification & Methodology

Viscosity Curve Before and After VH Correction

- Empty points: without correction
- Solid points: after correction

Moldex3D Publication about Viscous Heating Correction

MDP

Polymers 2021, 13, 4094

Article

Retrieving Equivalent Shear Viscosity for Molten Polymers from 3-D Nonisothermal Capillary Flow Simulation

Yu-Ho Wen, Chen-Chieh Wang *, Guo-Sian Cyue, Rong-Hao Kuo, Chia-Hsiang Hsu and Rong-Yeu Chang CoreTech System (Moldex3D) Co., Ltd., Chupei, Hsinchu 302082, Taiwan

Testing Items

 After correction iteration, the test report shown on the right will be provided.

TR- SS0004 v	/iscosity Curve verification-TP			Viscosity curve verification		
Material digit	tal twir ection	n – visc	ous	Procedure	7 speeds are applied in sequence within a run isothermally. Recording the history of pressure.	
				Rheometer specification	s (GÖTTFERT RG25)	
Viscosity				Die length	30 mm	
Model	Parameter	Value	Unit	Die diameter	1 mm	
		2 0179E-01	-	Die entry angle	90 degrees	
Modified Cross Model (3)	n					
Modified Cross Model (3)	n Taus	1.9605E+04	Pa	Barrel diameter	15 mm	
Modified Cross Model (3)	n Taus D1	1.9605E+04 3.0384E+14	Pa Pa*s	Barrel diameter	15 mm	
Modified Cross Model (3)	n Taus D1 D2	1.9605E+04 3.0384E+14 2.4815E+02	Pa Pa*s K	Barrel diameter Simulation information	15 mm	
Modified Cross Model (3)	n Taus D1 D2 D3	1.9605E+04 3.0384E+14 2.4815E+02 0.0000E+00	Pa Pa*s K K/Pa	Barrel diameter Simulation information Module	15 mm Moldex3D HRS Solver	
Modified Cross Model (3)	n Taus D1 D2 D3 A1	1.9605E+04 3.0384E+14 2.4815E+02 0.0000E+00 3.2019E+01	Pa Pa*s K K/Pa	Barrel diameter Simulation information Module Version	15 mm Moldex3D HRS Solver 2021 R1OR	
Modified Cross Model (3)	n Taus D1 D2 D3 A1 A2	1.9605E+04 3.0384E+14 2.4815E+02 0.0000E+00 3.2019E+01 5.1600E+01	Pa Pa*s K K/Pa - K	Barrel diameter Simulation information Module Version Number of elements	15 mm Moldex3D HRS Solver 2021 R1OR 39,696	

Testing report

Piston Speed [mm/s]		Pressure	Pressure Simulation (MPa]	Rel. Error (%)
	App. Shear rate [1/s]	Experiment [MPa]		
0.0556	100.0	3.88	4.01	1.3
0.1111	200.0	4.72	4.87	1.6
0.2778	500.0	5.97	6.12	1.5
0.5556	1000.0	6.94	7.14	2.1
1.1111	2000.0	7.98	8.26	2.9
2.7778	5000.0	9.61	9.92	3.2

Summary

- The Viscous Heating will be proportional to the viscosity and the square of shear rate. Therefore, the Test correction will be an important for <u>high viscosity material under high</u> <u>shear rate conditions.</u>
 - Significant material : PC, POM, ABS, HDPE, PEI, PA12, Fiber reinforcement material
 - Minor material : PP, LDPE, PA66, TPV
 - Insignificant material : LCP

Moldex3D Molding Research Center : Material Molding Validation

Build & Improve Shrinkage testcase database by DT

- 1. Improve integrated API for shrinkage rate report and comparisons
- 2. Integrated API into the RD auto test
- 3. Solver accuracy report for release version

Injection Pressure Based Viscosity Correction

Objective

- Traditionally the viscosity curves are measured under high temperature, and the low temperature viscosity are extrapolated from high temperature data.
- > The verification of injection molding pressure from very low to high injection speed is used to check the artificial solver modification near freeze temperature and calibrated the extrapolated part of viscosity curve. That is crucial for thin wall parts, low speed injection, and packing stage.

Our proposal : Injection Pressure Based Viscosity Calibration (IPBVC)

- > Validate injection pressure under various injection speeds and calibrate the low temperature viscosity.
 - Determine the optimal extrapolated viscosity curve that yields the closest match between the simulated injection pressure and the real injection pressure.

Use Material Digital Twin to Improve Material Model Parameters

Material Hub Cloud (MHC)

Outlook in Material Hub Cloud (MHC) Web Service

Thermoplastic Material Fitting Functions

Material Data Fitting f(x)PVT Model Parameters EX2 / PP / MHC b1L 1.253 cc/g DATA @ P1 = 30 [MPa] DATA @ P2 = 60 [MPa] DATA @ P3 = 90 [MPa] DATA @ P4 = 120 [MPa] - Fitting @ P1 = 30 [MPa] - Fitting @ P2 = 60 [MPa] - Fitting @ P3 = 90 [MPa] - Fitting @ P4 = 120 [MPa] b2L 0.0008704 cc/(g.K) b3L 909700000 dvne/cm² 1.31 PVT_Ex2_data.mrd ****** b4L 0.004828 1/K b1S 1.161 cc/g 1.25 Reupload b2S 0.0004134 cc/(g.K) b3S 1714000000 dyne/cm² Raw Data Template 1.20 b4S 0.00206 1/K 🖬 b5 417 ***** • \$ 1.15 2.356e-8 cm².K/dyne b6 PVT template 2 (.mrd) PVT template 1 (.csv) b7 0.09194 cc/g Viscosity template 2 (.mrd) Viscosity template 1 (.csv) b8 0.1543 1/K 1.10 Crystallinity template 2 (.csv) b9 3.949e-9 cm²/dyne 1.06 150 Error Sum 1.644e-1 < Temperature [*C] > Fitting Export Result

PVT

Viscosity

Crystallinity

Support CSV or MRD file format, and provide template to download for editing

Digital Material Generator Function

Digital Material Generator: Allows users to create material file (MTR) for new materials or to check basic properties (e.g., viscosity, PVT, heat capacity, etc.) of possible materials.

Moldex3D Digital Twin-Driven Simulations

"Chat" between Digital Twin

Thank you