

Moldex3D Fibers 2 & Micromechanics

Contents

- > Introduction
- > Moldex3D Fiber Features and Benefits
- > Micromechanics Interface

Introduction

Why Fiber

> Fiber Reinforced Plastics (FRP) has widely acted as an major material for lots of plastic parts for their superior mechanical properties

Raw Material Types

> Material types are related to fiber length

Fiber Reinforced Plastics (FRP)

- > In fiber-reinforced plastic (FRP) production, there are three most important factors affecting the filling behavior, warpage, and product structural strength
 - Fiber orientation
 - Fiber length (Breakage Prediction during Screw processing)
 - Fiber concentration (The concentration corresponds to the fiber orientation and melt viscosity)

Importance of Orientation -Fiber Orientation Distribution

- > Flow orientation distribution consists of core, shell and skin through the thickness of the molding
 - Core region contains a more random in plane skin boundary Shell layers are dominantly aligned in the flow direction Skip boundaries are due to a fiber-wall interaction shell layer shell layer shell layer core region 0.90 core region 0,80 0,70 0,60 skin boundary ^{0,50} skin boundary 0.40 shell layer Skin 0,30

z/h

Importance of Orientation -Young's Modulus and Fiber Direction

- > The modulus value for Unidirectional Fiber
 - The force direction parallel to the fiber direction is maximum, and perpendicular to the fiber direction is minimum
- > The modulus value for Biaxial Woven Fiber
 - The force direction are relatively insignificant

Importance of Orientation - 3D Orientation

- > The fiber orientation shows a full 3D phenomena
 - Traditional 2.5D method
 - Limited to the thin wall and creeping assumption
 - Only considers in-plane (layer-by-layer) orientation and can not predict out-of-plane phenomenon
 - Fountain effect

• Tumbling of fibers

Importance of Fiber Length

- > The melt went through the screw melting and injecting process, high shear forces can easily snap the fibers
- > Apparent fiber length degradation, less than 1/5 the original length can be easily found in the finished part

Importance of Fiber Length -Strength and Stiffness

- > Long fiber can all reinforce the part in its strength and stiffness better than the short
- > Adding long fibers also get a better impact strength value

	Reinforcement Ratio [Property of reinforced grade/Property of virgin grade]		
	Short Fibers Thermoplastics	Long Fiber Thermoplastics	Continuous fibers
Tensile strength	1.5	1.5- <mark>4</mark>	Upto 50
Tensile modulus	3.2	4-10	Upto 80
Notched impact strength	0.3	2-5	
HDT A	2.0	2-3	
Thermal conductivity	1.4	1.5-2	
Coefficient of thermal expansion	0.5	0.2-0.5	

Importance of Fiber Concentration

- > In 1956, Maron and Pierce describe the phenomenon in Suspension Balance Model
- > Later in 1980, Kitano et al. conducted an experiment
 - The higher fiber concentration will be the greater the viscosity and make the polymer melt difficult to flow forward
- > Moldex3D based on these research studies and experiments to verify the simulation accuracy

Fig. 1. Relations between η_r and ϕ for polymer melts filled with various filler. The numerical values represent the values of A in eq. [2]. (•): glassy spheres, (•): natural calcium carbonate (NC), (Δ): talc (TC), (A): precipitated calcium carbonate (PC), (\Box): GF/PE with $\bar{p} = 6$, (\Diamond): GF/PE with $\bar{p} = 23$, and (×): CF/PE with $\bar{p} = 73$, GF/PP with $\bar{p} = 23$, and (×): CF/PE with $\bar{p} = 6$ and 8, TC and PC are roughly represented by the same curve with A = 0.44

(Ref: An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers, T. Kitano, T. Kataoka, and T. Shirota, 1980)

Features and Benefits

Benefits of Moldex3D Fiber

- > More reliable model
 - Objective improvement to complete Moldex3D's iARD-RPR orientation model

Especially for enhancing the core region

Not to set an additional inlet condition around gate

- > More accurate default
 - Friendly suggestion of optimal default parameters for short/long fibers
 - High Accuracy within experiment verification

Material Parameter without largely fine-tuning parameter

- > More anisotropic warp
 - Accurate fiber orientation to better anisotropic warp

Fiber Analysis in Flow

> Orientation at weld line region

(a) Fiber reinforced material; melt fronts approach.

Fibers have trouble penetrating the weld line

http://www.dc.engr.scu.edu/cmdoc/dg_doc/develop/trouble/weldmeld/f6000001.htm

Fiber Analysis in Warp

- > Capable of simulating the fiber orientation and the anisotropic warpage behaviour
 - Anisotropic mechanical properties

- > Moldex3D R13.0 provides 70-80% accuracy on of fiber orientation prediction
- > Moldex3D R14.0 further enhances the core region with an accuracy increment of at least 20%

Fiber Analysis for Structural Simulation (1) - Moldex3D FEA Interface Workflow

Fiber Analysis for Structural Simulation (2) - Moldex3D Digimat Workflow

Moldex3D Fiber 2.0

- > Provide the three major factors: fiber orientation, fiber length, and fiber concentration that directly affect the material properties of FRP products
- > Validate resultant anisotropic mechanical properties of fiberreinforced materials
- > Moldex3D FEA Interface outputs fiber orientation information and combines with DIGIMAT to provide material information to structural analysis software
- > Moldex3D users can benefit from getting a comprehensive fiber analysis in the injection molding process

Micromechanics Interface

Micromechanics Interface

- > More considerations for nonlinear multi-scale material modeling simulation with integration of <u>Digimat</u> and <u>Converse</u> before FEA software
- > Provide more efficient and accurate structural analysis of composite materials
- > Give users an opportunity to solve complex nonlinear multiscale finite element problems

Supported Output Files

Cdigimat	Function Items	Description	File name
FEA Interface Function Option Stress solver : ANSYS Element type : Solid-185	Weld line	Weld line definitions are imported in Digimat- MAP in the form of node sets. This allow to export these sets to CAE codes, using proper element set definition, in order to assign them particular material properties.	*.nwd
Output mesh as : Original Function options Part	Fiber orientation	Export the fiber orientation data for further analysis to view characteristics of fiber.	*.o2d
Micromechanics model Mori-Tanaka model Material reduction of fiber orientation Medium-level reduction Runner output Thermal stress output Flow induced residual stress output Initial strain output (As temperature difference) Packing phase temperature output End of cooling temperature output	Flow-induced residual stress	When the mold opens to extract the part, those residual stress induce part deformations. Digimat-MAP is there to map such data input and allow to account for it as inputs of mechanical simulations.	*.s2d
Micromechanics interface Weld line output Max weld line angle (0-135): 135.0 Fiber orientation output Flow induced residual stress output Density output Density output Weld line output Function description : For the fiber filled polymer, the composite mechanical properties are associated with the mechanical properties	Temperature	Temperatures before this cooling step could then be exported from the injection simulation results in order to perform a warpage analysis using DIGIMAT, Digimat-MAP allowing to map those temperatures from the injection mesh onto the structural mesh.	*.t2d
of polymer and fiber. Select the micro-mechanics model to predict the composite mechanical properties of fiber filled polymer. Output to: D:\@Moldex3D\3. Working Section\1. Emterprise Case\(Inventec) 好業達\Inventec_2904\F Export	MuCell®	Export the cell size and cell density data for analysis to observe the mechanical properties of Mucell® structure. Digimat-MF and Digimat-CAE can transform the element modulus	*.m2d

Thank You

