

Simulation and new processes

Moldex3D John LIN

Outline

> Hot Runner Steady

> RTM

Hot Runner Steady

Situation and Challenge

- > Situation
 - High-Cavitation (16 ~ 128) HRS applications are getting popular
 - The average report delivery time of flow analysis is taking too long since the element count is higher for high-cavitation HRS applications

Concept

- > 3D Hot Runner Steady Analysis
 - Supports the quick steady analysis of complex hot runner layout design, including the support for advanced hot runner module from cooling analysis
- > Benefit
 - Balance ratio study for the design of hot runner layout
 - Enhanced cycle to cycle prediction for viscous heating
 - Save the analysis time for hot runner layout designer

- AHR license is required
- Support MFE mesh type

Application Sample

Hot Runner Design	 16-drop system 2,601,248 elements 		
	Filling Analysis	HRS Analysis	
CPU Time (by 8 CPUs)	62.2 min 15 ti	4.2 min	
Pressure Drop in Hot Runner	16.925 MPa ^{fast} (23.983 – 7.058 MPa)	er 17.346 MPa (24.404 – 7.058 MPa)	

High Cavitation Hot Runner System

- > Inherit Hot Runner Temperature from Previous Cycles
 - HRS volume >> Cavity volume
 - For high cavitation (16+) hot runner case, usually the volume ratio between cavity and HRS is huge.
 - Steady Melt Temperature in HRS
 - Upstream (inlet) has higher shear rate than downstream (drop) due to flow front area difference
 - It usually takes several cycles to accumulate the shear heating effect, and then induce non-symmetry temperature distribution between different drops.

Hot Runner Temperature between Cycles

Conventional Multi-Cavity Flow Analysis

- > Initial Melt Temperature in HRS
 - Ideal situation: Uniform melt temperature distribution
 - The initial melt temperature is considered as uniform distribution and is equivalent to the setting in process condition

Uniform Temperature in HRS

Uniform initial melt temperature distribution at beginning of filling analysis (filling process at 0 sec)

Multi-Cavity Flow Analysis New Approach

- > Initial Melt Temperature in HRS
 - Actual situation: Non-uniform & Non-symmetry distribution due shear heating effect

Non-uniform Temperature in HRS

Residual shear heated melt from previous cycles (influence factor comes from inside of hot runner channel)

Data Exchange to Filling Analysis

Information in filling log file

>>> G1002: No existing cooling result. The default mold temperature will now be used for calculation.

>>> Update Hot Runner Temperature Distribution from Hot Runner Steady Solver.

<pre><solver_options_information> Flow Solver Accuracy/Performance Options Fiber Computation Non-Isothermal Viscous Heating Consider crystallization effect Non-Newtonian Fluid Effect Estimate Cooling Time Flow-induced Residual Stress Computation Compressible Flow Mesh Type Criterion of Stopping Calculation Type </solver_options_information></pre>	= 5 = OFF = ON = ON = OFF = OFF = OFF = OFF = Solid mesh file = Filling percentage(99,9654%)
Initial Hot runner condition Stabilized Calculation Gradient Operator Type Projection Area On Mold-Opening Direction Number of Computation Processes Fixed HTC Mode Particle Tracer Analysis Weld line Particle Tracer Analysis Melt front enhancement	= From Hot runner Steady = ON = 0 = 28.7509 cm^2 = 4 = ON = OFF = OFF = OFF = ON

Flow solver uses HRS analysis result as initial hot runner melt temperature

analysis when only it is **<u>AHR Cooling</u>**, but not cycle-average and general transient cool.

initial hot runner melt temperature

Hot Runner Temperature Comparison

Melt Front Time Animation

Conventional Flow Analysis

New Approach Flow Analysis

Proper initial hot runner temperature is a key factor for predicting accurate filling pattern

Summary

- > Hot runner steady analysis can
 - support symmetry boundary condition setting as usual
 - cut down element count in high-cavitation cases for hot runner pressure drop predilection by using dummy cavities
 - save the analysis time significantly to predict pressure drop and help to optimize hot runner layout design efficiently
 - accurately detect potential flow balance issues to help making appropriate design changes, resulting in better hot runner design

RTM

Composite Products

> Goal: Reduce vehicle weight, Improve mechanical strength of the product
Hybrid

Liquid Composite Molding (LCM) Processes

- > For manufacturing of composite parts with a high content of oriented reinforcement
 - The impregnation of a dry preform with a liquid matrix by liquid composite molding processes
 - Very high potential for economical manufacturing of high performance composite components
- > Types of processes covered
 - Hand layup, spray up
 - RTM VARTM RFI CRTM

BMW i3

http://www.bmw.com.cn/cn/zh/newvehicles/i/i3/2013/showroom/

Yacht

http://horizonyacht.com/tw/News.aspx?Cond=7bf10f7c-4f4c-4a94-b285-e6dc4f13bdb8&Pindex=14&Year=All&Month=All

Wind Turbine Blades

http://www.moneydi.com/KMD.I/News/

Fiber Reinforced Plastic Application

Benefit of RTM

- > Resin transfer molding (RTM)
 - Mass production
 - Same quality
 - Parts can be manufactured with an A-class finish on both sides

Manufacturing Process

- > FRP manufacturing process
 - RTM
 - VARTM (Vacuum Assisted)
 - RTM Light (LRTM)
 - CRTM

http://goo.gl/S4A9wz Source: http://goo.gl/i35Z8c Pavel Simacek, SureshG. Advani, "Modeling resin flow and fiber tow saturation induced by distribution media collapse in VARTM", <u>Composites Science and Technology</u>, <u>Volume 67, Issue 13</u>, October 2007, Pages 2757–2769

Problems and Challenges

- > **Defects**
 - Incomplete filling
 - Air-trap
- > Process
 - Very difficult to make the successful process effectively
- > Behind the molding
 - How to catch material property with the complex fibermat structure

Fiber Mat Orientation

Filling - Darcy's law

$$\vec{\mathbf{v}} = -\frac{1}{\mu} [K] \nabla P$$

• Permeability K (m² or cm²) is used to describe the easiness of filling in different direction. The larger the K is, the faster the filling under the same pressure difference.

$$\mathbf{K} = \begin{bmatrix} K_{xx} & K_{xy} & K_{xz} \\ K_{yx} & K_{yy} & K_{yz} \\ K_{zx} & K_{zy} & K_{zz} \end{bmatrix}$$

K₁₁In-Plane Direction

Overcome the Challenges

- > Developed Moldex3D Resin Transfer Molding (RTM) module
 - Through dynamic features to understand process
 inside mechanism
 - Help integrate for design, process, and material
 - For quality retain and defects solving
 - Using virtual system to make validation
 - Allow us to make qualitative and quantitative prediction

Melt Front in RTM Module

> Distribution medium effect in thickness direction for 3D simulation

R. Mathur, D. Heider, C. Hoffmann, J.W. Gillespie JR., S. G. Advani, and B. K. Fink. "Flow Front Measurement and Model Validation in the Vacuum Assisted Resin Transfer Molding Process" Polymer Composite, August 2001, Vol. 22,

Case verification for 1kw wind blade

- > Resin:
 - SWANCOR 2502 A/B
- > Pressure Control
 - 1 atm

The stand is		DM = E# =	- Distribution Media Resin Entrance
	132.50	cm	
н ом	DM	DM	DM
24.7cm 32.5cm	24.8cm	25.5cm 34cm	27.8em 34cm
Inlet E4	Inlet E3	Inlet E2	Inlet E1

> Permeability

	Carbon fabric	Distribution Media
Thickness[mm]	0.9653	0.9263
K ₁₁ [m ²]	8.387E-12	1.071E-9
K ₂₂ [m ²]	8.387E-12	1.071E-9
K ₃₃ [m ²]	8.400E-13	1.071E-9
	0.399	0.491

Geometry and Layup

Flow Front Result

Evolution of Flow Front Location Experiment - Simulation

> Detailed comparison between the simulation and experiment results

Moldex3D RTM

- > Supports pressure/flow rate control, multi-inlet open/close control. The simulation result can reflect the influence of changing fiber mat type and orientation
- > With true 3D simulation solver, Moldex3D can predict the filling behavior in thickness direction and the venting region effect of the RTM process

Thank You